Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: covidwho-1932894

ABSTRACT

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Immunoglobulin G , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
2.
Cell Rep Med ; 3(7): 100680, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1907870

ABSTRACT

The biological determinants underlying the range of coronavirus 2019 (COVID-19) clinical manifestations are not fully understood. Here, over 1,400 plasma proteins and 2,600 single-cell immune features comprising cell phenotype, endogenous signaling activity, and signaling responses to inflammatory ligands are cross-sectionally assessed in peripheral blood from 97 patients with mild, moderate, and severe COVID-19 and 40 uninfected patients. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identify and independently validate a multi-variate model classifying COVID-19 severity (multi-class area under the curve [AUC]training = 0.799, p = 4.2e-6; multi-class AUCvalidation = 0.773, p = 7.7e-6). Examination of informative model features reveals biological signatures of COVID-19 severity, including the dysregulation of JAK/STAT, MAPK/mTOR, and nuclear factor κB (NF-κB) immune signaling networks in addition to recapitulating known hallmarks of COVID-19. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for prevention and/or treatment of COVID-19 progression.


Subject(s)
COVID-19 , Humans , NF-kappa B/metabolism , Proteomics , SARS-CoV-2 , Signal Transduction
3.
Front Immunol ; 12: 739037, 2021.
Article in English | MEDLINE | ID: covidwho-1448729

ABSTRACT

Background: Transfusion of COVID-19 convalescent plasma (CCP) containing high titers of anti-SARS-CoV-2 antibodies serves as therapy for COVID-19 patients. Transfusions early during disease course was found to be beneficial. Lessons from the SARS-CoV-2 pandemic could inform early responses to future pandemics and may continue to be relevant in lower resource settings. We sought to identify factors correlating to high antibody titers in convalescent plasma donors and understand the magnitude and pharmacokinetic time course of both transfused antibody titers and the endogenous antibody titers in transfused recipients. Methods: Plasma samples were collected up to 174 days after convalescence from 93 CCP donors with mild disease, and from 16 COVID-19 patients before and after transfusion. Using ELISA, anti-SARS-CoV-2 Spike RBD, S1, and N-protein antibodies, as well as capacity of antibodies to block ACE2 from binding to RBD was measured in an in vitro assay. As an estimate for viral load, viral RNA and N-protein plasma levels were assessed in COVID-19 patients. Results: Anti-SARS-CoV-2 antibody levels and RBD-ACE2 blocking capacity were highest within the first 60 days after symptom resolution and markedly decreased after 120 days. Highest antibody titers were found in CCP donors that experienced fever. Effect of transfused CCP was detectable in COVID-19 patients who received high-titer CCP and had not seroconverted at the time of transfusion. Decrease in viral RNA was seen in two of these patients. Conclusion: Our results suggest that high titer CCP should be collected within 60 days after recovery from donors with past fever. The much lower titers conferred by transfused antibodies compared to endogenous production in the patient underscore the importance of providing CCP prior to endogenous seroconversion.


Subject(s)
COVID-19/therapy , Convalescence , SARS-CoV-2/immunology , Seroconversion , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/blood , Blood Donors , COVID-19/blood , COVID-19/immunology , Female , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , Outpatients , RNA, Viral/blood , COVID-19 Serotherapy
4.
JAMA Netw Open ; 4(9): e2125524, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1414844

ABSTRACT

Importance: As of May 2021, more than 32 million cases of COVID-19 have been confirmed in the United States, resulting in more than 615 000 deaths. Anaphylactic reactions associated with the Food and Drug Administration (FDA)-authorized mRNA COVID-19 vaccines have been reported. Objective: To characterize the immunologic mechanisms underlying allergic reactions to these vaccines. Design, Setting, and Participants: This case series included 22 patients with suspected allergic reactions to mRNA COVID-19 vaccines between December 18, 2020, and January 27, 2021, at a large regional health care network. Participants were individuals who received at least 1 of the following International Statistical Classification of Diseases and Related Health Problems, Tenth Revision anaphylaxis codes: T78.2XXA, T80.52XA, T78.2XXD, or E949.9, with documentation of COVID-19 vaccination. Suspected allergy cases were identified and invited for follow-up allergy testing. Exposures: FDA-authorized mRNA COVID-19 vaccines. Main Outcomes and Measures: Allergic reactions were graded using standard definitions, including Brighton criteria. Skin prick testing was conducted to polyethylene glycol (PEG) and polysorbate 80 (P80). Histamine (1 mg/mL) and filtered saline (negative control) were used for internal validation. Basophil activation testing after stimulation for 30 minutes at 37 °C was also conducted. Concentrations of immunoglobulin (Ig) G and IgE antibodies to PEG were obtained to determine possible mechanisms. Results: Of 22 patients (20 [91%] women; mean [SD] age, 40.9 [10.3] years; 15 [68%] with clinical allergy history), 17 (77%) met Brighton anaphylaxis criteria. All reactions fully resolved. Of patients who underwent skin prick tests, 0 of 11 tested positive to PEG, 0 of 11 tested positive to P80, and 1 of 10 (10%) tested positive to the same brand of mRNA vaccine used to vaccinate that individual. Among these same participants, 10 of 11 (91%) had positive basophil activation test results to PEG and 11 of 11 (100%) had positive basophil activation test results to their administered mRNA vaccine. No PEG IgE was detected; instead, PEG IgG was found in tested individuals who had an allergy to the vaccine. Conclusions and Relevance: Based on this case series, women and those with a history of allergic reactions appear at have an elevated risk of mRNA vaccine allergy. Immunological testing suggests non-IgE-mediated immune responses to PEG may be responsible in most individuals.


Subject(s)
COVID-19 Vaccines/adverse effects , Hypersensitivity/diagnosis , Adolescent , Adult , Aged , COVID-19 Vaccines/therapeutic use , Drug-Related Side Effects and Adverse Reactions/diagnosis , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Hypersensitivity/epidemiology , Male , Middle Aged , Risk Factors , United States/epidemiology , United States Food and Drug Administration/organization & administration , United States Food and Drug Administration/statistics & numerical data , Vaccination/adverse effects
5.
Allergy ; 77(1): 173-185, 2022 01.
Article in English | MEDLINE | ID: covidwho-1255322

ABSTRACT

BACKGROUND: It is unclear whether asthma and its allergic phenotype are risk factors for hospitalization or severe disease from SARS-CoV-2. METHODS: All patients over 28 days old testing positive for SARS-CoV-2 between March 1 and September 30, 2020, were retrospectively identified and characterized through electronic analysis at Stanford. A sub-cohort was followed prospectively to evaluate long-term COVID-19 symptoms. RESULTS: 168,190 patients underwent SARS-CoV-2 testing, and 6,976 (4.15%) tested positive. In a multivariate analysis, asthma was not an independent risk factor for hospitalization (OR 1.12 [95% CI 0.86, 1.45], p = .40). Among SARS-CoV-2-positive asthmatics, allergic asthma lowered the risk of hospitalization and had a protective effect compared with non-allergic asthma (OR 0.52 [0.28, 0.91], p = .026); there was no association between baseline medication use as characterized by GINA and hospitalization risk. Patients with severe COVID-19 disease had lower eosinophil levels during hospitalization compared with patients with mild or asymptomatic disease, independent of asthma status (p = .0014). In a patient sub-cohort followed longitudinally, asthmatics and non-asthmatics had similar time to resolution of COVID-19 symptoms, particularly lower respiratory symptoms. CONCLUSIONS: Asthma is not a risk factor for more severe COVID-19 disease. Allergic asthmatics were half as likely to be hospitalized with COVID-19 compared with non-allergic asthmatics. Lower levels of eosinophil counts (allergic biomarkers) were associated with a more severe COVID-19 disease trajectory. Recovery was similar among asthmatics and non-asthmatics with over 50% of patients reporting ongoing lower respiratory symptoms 3 months post-infection.


Subject(s)
Asthma , COVID-19 , Asthma/diagnosis , Asthma/epidemiology , COVID-19 Testing , Humans , Phenotype , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL